67 research outputs found

    Error, reproducibility and sensitivity : a pipeline for data processing of Agilent oligonucleotide expression arrays

    Get PDF
    Background Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples. Results We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2% of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log2 units ( 6% of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators. Conclusions This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells

    Base-edited CAR T cells for combinational therapy against T cell malignancies

    Get PDF
    Targeting T cell malignancies using chimeric antigen receptor (CAR) T cells is hindered by β€˜T v T’ fratricide against shared antigens such as CD3 and CD7. Base editing offers the possibility of seamless disruption of gene expression of problematic antigens through creation of stop codons or elimination of splice sites. We describe the generation of fratricide-resistant T cells by orderly removal of TCR/CD3 and CD7 ahead of lentiviral-mediated expression of CARs specific for CD3 or CD7. Molecular interrogation of base-edited cells confirmed elimination of chromosomal translocations detected in conventional Cas9 treated cells. Interestingly, 3CAR/7CAR co-culture resulted in β€˜self-enrichment’ yielding populations 99.6% TCRβˆ’/CD3βˆ’/CD7βˆ’. 3CAR or 7CAR cells were able to exert specific cytotoxicity against leukaemia lines with defined CD3 and/or CD7 expression as well as primary T-ALL cells. Co-cultured 3CAR/7CAR cells exhibited highest cytotoxicity against CD3 + CD7 + T-ALL targets in vitro and an in vivo human:murine chimeric model. While APOBEC editors can reportedly exhibit guide-independent deamination of both DNA and RNA, we found no problematic β€˜off-target’ activity or promiscuous base conversion affecting CAR antigen-specific binding regions, which may otherwise redirect T cell specificity. Combinational infusion of fratricide-resistant anti-T CAR T cells may enable enhanced molecular remission ahead of allo-HSCT for T cell malignancies

    HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nuclear import of the HIV-1 reverse transcription complex (RTC) is critical for infection of non dividing cells, and importin 7 (imp7) has been implicated in this process. To further characterize the function of imp7 in HIV-1 replication we generated cell lines stably depleted for imp7 and used them in conjunction with infection, cellular fractionation and pull-down assays.</p> <p>Results</p> <p>Imp7 depletion impaired HIV-1 infection but did not significantly affect HIV-2, simian immunodeficiency virus (SIVmac), or equine infectious anemia virus (EIAV). The lentiviral dependence on imp7 closely correlated with binding of the respective integrase proteins to imp7. HIV-1 RTC associated with nuclei of infected cells with remarkable speed and knock down of imp7 reduced HIV-1 DNA nuclear accumulation, delaying infection. Using an HIV-1 mutant deficient for reverse transcription, we found that viral RNA accumulated within nuclei of infected cells, indicating that reverse transcription is not absolutely required for nuclear import. Depletion of imp7 impacted on HIV-1 DNA but not RNA nuclear import and also inhibited DNA transfection efficiency.</p> <p>Conclusion</p> <p>Although imp7 may not be essential for HIV-1 infection, our results suggest that imp7 facilitates nuclear trafficking of DNA and that HIV-1 exploits imp7 to maximize nuclear import of its DNA genome. Lentiviruses other than HIV-1 may have evolved to use alternative nuclear import receptors to the same end.</p

    Lentiviral Vector Production Titer Is Not Limited in HEK293T by Induced Intracellular Innate Immunity

    Get PDF
    Most gene therapy lentiviral vector (LV) production platforms employ HEK293T cells expressing the oncogenic SV40 large T-antigen (TAg) that is thought to promote plasmid-mediated gene expression. Studies on other viral oncogenes suggest that TAg may also inhibit the intracellular autonomous innate immune system that triggers defensive antiviral responses upon detection of viral components by cytosolic sensors. Here we show that an innate response can be generated after HIV-1-derived LV transfection in HEK293T cells, particularly by the transgene, yet, remarkably, this had no effect on LV titer. Further, overexpression of DNA sensing pathway components led to expression of inflammatory cytokine and interferon (IFN) stimulated genes but did not result in detectable IFN or CXCL10 and had no impact on LV titer. Exogenous IFN-Ξ² also did not affect LV production or transduction efficiency in primary T cells. Additionally, manipulation of TAg did not affect innate antiviral responses, but stable expression of TAg boosted vector production in HEK293 cells. Our findings demonstrate a measure of innate immune competence in HEK293T cells but, crucially, show that activation of inflammatory signaling is uncoupled from cytokine secretion in these cells. This provides new mechanistic insight into the unique suitability of HEK293T cells for LV manufacture

    An experimental evaluation of a loop versus a reference design for two-channel microarrays

    Get PDF
    Motivation: Despite theoretical arguments that socalled "loop designs" of two-channel DNA microarray experiments are more efficient, biologists keep on using "reference designs". We describe two sets of microarray experiments with RNA from two different biological systems (TPA-stimulated mammalian cells and Streptomyces coelicor). In each case, both a loop and a reference design were performed using the same RNA preparations with the aim to study their relative efficiency. Results: The results of these experiments show that (1) the loop design attains a much higher precision than the reference design, (2) multiplicative spot effects are a large source of variability, and if they are not accounted for in the mathematical model, for example by taking log-ratios or including spot-effects, then the model will perform poorly. The first result is reinforced by a simulation study. Practical recommendations are given on how simple loop designs can be extended to more realistic experimental designs and how standard statistical methods allow the experimentalist to use and interpret the results from loop designs in practice

    TCRΞ±Ξ²/CD3 disruption enables CD3-specific antileukemic T cell immunotherapy

    Get PDF
    T cells engineered to express chimeric antigen receptors (CARs) against B cell antigens are being investigated as cellular immunotherapies. Similar approaches designed to target T cell malignancies have been hampered by the critical issue of T-on-T cytotoxicity, whereby fratricide or self-destruction of healthy T cells prohibits cell product manufacture. To date, there have been no reports of T cells engineered to target the definitive T cell marker, CD3 (3CAR). Recent improvements in gene editing now provide access to efficient disruption of such molecules on T cells, and this has provided a route to generation of 3CAR, CD3-specific CAR T cells. T cells were transduced with a lentiviral vector incorporating an anti-CD3Ξ΅ CAR derived from OKT3, either before or after TALEN-mediated disruption of the endogenous TCRΞ±Ξ²/CD3 complex. Only transduction after disrupting assembly of TCRΞ±Ξ²/CD3 yielded viable 3CAR T cells, and these cultures were found to undergo self-enrichment for 3CAR+TCR-CD3- T cells without any further processing. Specific cytotoxicity against CD3Ξ΅ was demonstrated against primary T cells and against childhood T cell acute lymphoblastic leukemia (T-ALL). 3CAR T cells mediated potent antileukemic effects in a human/murine chimeric model, supporting the application of cellular immunotherapy strategies against T cell malignancies. 3CAR provides a bridging strategy to achieve T cell eradication and leukemic remission ahead of conditioned allogeneic stem cell transplantation

    Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity

    Get PDF
    TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5Ξ± but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations
    • …
    corecore